³ÏÐÅΪ±¾×¨Òµ·þÎñ ¹ÙÍø

ÎÒÏëÏàʶ
ÓïÖÖ
ÖÐÎļòÌå ÖÐÎÄ·±Ìå English
ÓªÒµÌü
ÍøÉÏÓªÒµÌü ÕÆÉÏÓªÒµÌü
·µ»Ø¶¥²¿
TeleAI ¶àÏîЧ¹û±»¹ú¼Ê¶¥¼¶Ñ§Êõ¾Û»á NeurIPS 2025 ÊÕ¼
2025-09-25 Öйú³ÏÐÅΪ±¾×¨Òµ·þÎñ ¹ÙÍø

¿ËÈÕ£¬£¬£¬£¬£¬£¬ÓÉÖйúÅÌËã»úѧ»á£¨CCF£©ÍƼöµÄAÀàѧÊõ¾Û»á¡¢È˹¤ÖÇÄÜÁìÓò¶¥¼¶¹ú¼Ê¾Û»áÖ®Ò»¡°NeurIPS 2025¡±£¨Éñ¾­ÐÅÏ¢´¦Öóͷ£ÏµÍ³´ó»á£©Ðû²¼ÂÛÎÄÈÎÃüЧ¹û¡£¡£¡£¡£¡£Öйú³ÏÐÅΪ±¾×¨Òµ·þÎñ ¹ÙÍøÈ˹¤ÖÇÄÜÑо¿Ôº£¨TeleAI£©¹²ÓÐ7ÏîЧ¹û±»ÊÕ¼£¬£¬£¬£¬£¬£¬Öصã¾Û½¹Õý¼¤ÀøÔëÉù£¨Pi/¦Ð-Noise, Positive-incentive Noise£©¡¢¾ßÉíÖÇÄÜ£¬£¬£¬£¬£¬£¬ÒÔ¼°´óÄ£×ÓÍÆÀí¼ÓËÙ¡¢Í¼ÏñÌìÉú¡¢¶àģ̬Ã÷È·£¬£¬£¬£¬£¬£¬½øÒ»²½ÍƸÐÈ˹¤ÖÇÄÜÊÖÒÕÁ¢Òì²¢ÂõÏò¹¤ÒµÂ䵨ӦÓᣡ£¡£¡£¡£

×÷Ϊ»úеѧϰºÍÅÌËãÉñ¾­¿ÆÑ§ÁìÓòÀúÊ·×îÓÆ¾Ã¡¢ÉùÍû×î¸ßµÄ¶¥¼¶¹ú¼Ê¾Û»áÖ®Ò»£¬£¬£¬£¬£¬£¬NeurIPS º­¸Ç´ÓÉî¶Èѧϰ¡¢Ç¿»¯Ñ§Ï°¡¢ÅÌËã»úÊÓ¾õ¡¢×ÔÈ»ÓïÑÔ´¦Öóͷ££¬£¬£¬£¬£¬£¬µ½ÀíÂÛ»ù´¡¡¢Ëã·¨ÓÅ»¯¡¢Â×Àí¹«ÕýÐÔµÈÆÕ±éÒéÌ⣬£¬£¬£¬£¬£¬ÊÇÊÓ²ì AIÁìÓò×îÐÂÑо¿Ï£ÍûºÍδÀ´Ç÷ÊÆµÄÖ÷Òª´°¿Ú¡£¡£¡£¡£¡£½ñÄê¾Û»á¹²ÊÕµ½ 21575ƪÓÐÓÃÂÛÎÄͶ¸å£¬£¬£¬£¬£¬£¬ÎüÊÕÂÊΪ24.52%£¬£¬£¬£¬£¬£¬ÎåÄêÀ´×îµÍ£¬£¬£¬£¬£¬£¬¾ºÕùÇ¿ÁÒ¡£¡£¡£¡£¡£

ÔÚÕý¼¤ÀøÔëÉù£¨Pi/¦Ð-Noise, Positive-incentive Noise£©Ñо¿Æ«Ïò£¬£¬£¬£¬£¬£¬TeleAI Ìá³ö MIN£¨Mixture of Noise£¬£¬£¬£¬£¬£¬ÔëÉù»ìÏý£©ÒªÁ죬£¬£¬£¬£¬£¬Í¨¹ýÒýÈëÓÐÒæÔëÉùºÍÔëÉù»ìÏý£¬£¬£¬£¬£¬£¬½â¾ö»ùÓÚԤѵÁ·Ä£×Ó£¨PTM£©µÄÖÖ±ðÔöÁ¿Ñ§Ï°£¨CIL£©ÖеIJÎÊýÆ¯ÒÆ£¨Óк¦ÔëÉù£©ÎÊÌ⣬£¬£¬£¬£¬£¬ÈÃÄ£×ÓÄܹ»Ò»Á¬Ñ§Ï°ÐÂÖÖ±ð֪ʶ£¬£¬£¬£¬£¬£¬µ«²»ÒÅÍü¾ÉÖÖ±ð֪ʶ£¬£¬£¬£¬£¬£¬¼á³ÖԤѵÁ·Ä£×ӵķº»¯ÄÜÁ¦¡£¡£¡£¡£¡£

ΪÁËÈÃÈËÐλúеÈËÄܹ»ÏñÈËÀàÒ»Ñù¼á³Ö¶ÔÉíÌåµÄ¿ØÖÆÎȹÌÐÔ£¬£¬£¬£¬£¬£¬²¢Ñ§Ï°¶àÖÖ¶àÑùµÄ¸ß¶¯Ì¬ÈËÀàÊÖÒÕ£¬£¬£¬£¬£¬£¬TeleAIÍÆ³ö¾ßÉí²»È·¶¨ÐÔÍýÏë¿ò¼Ü CURE¡¢¸ß¶¯Ì¬È«ÉíÔ˶¯¿ò¼Ü KungfuBot¡¢ÉÏÏÂÖ«¶Ô¿¹ÑµÁ·ÓëЭͬ¿ò¼Ü ALMI ÈýÏîÁ¢ÒìЧ¹û¡£¡£¡£¡£¡£ÕâЩЧ¹û½«ÌáÉý»úеÈ˵ÄÎȹÌÐÔºÍЭµ÷ÐÔ£¬£¬£¬£¬£¬£¬ÈÃËüÃǾ߱¸¸üÎÞаµÄÔ˶¯ÄÜÁ¦¼°Ó¦¶ÔÖØ´ó¸ß¶¯Ì¬ÐÐΪµÄÄ£ÄâÄÜÁ¦¡£¡£¡£¡£¡£

ÔÚ½øÒ»²½Íƶ¯´óÄ£×ÓÂ䵨µÄ¡°×îºóÒ»¹«À·½Ã棬£¬£¬£¬£¬£¬TeleAI Ìá³ö CAS-Spec Ëã·¨ºÍ NFIG Ëã·¨£¬£¬£¬£¬£¬£¬»®·ÖÕë¶ÔÎı¾ÌìÉúºÍͼÏñÌìÉú£¬£¬£¬£¬£¬£¬ÊµÏÖ´óÄ£×ÓµÄÍÆÀíЧÂÊÌáÉý¼°±¾Ç®½ÚÔ¼¡£¡£¡£¡£¡£ÎªÂòͨÊý×ÖÖÇÄÜÓëÎïÀíÖÇÄܵÄÅþÁ¬£¬£¬£¬£¬£¬£¬TeleAI »¹ÍƳöÃæ°åÃ÷È·Óë²Ù×÷»ù×¼ PUO-Bench£¬£¬£¬£¬£¬£¬²¢Á¢ÒìÉè¼ÆÒþ˽±£»£»£»£»£»£»¤¿ò¼Ü PPF£¬£¬£¬£¬£¬£¬ÎªÎïÀí×°±¸µÄÖÇÄܽ»»¥ÌṩÖÜÈ«½â¾ö¼Æ»®¡£¡£¡£¡£¡£

NeurIPS Óë ICML£¨¹ú¼Ê»úеѧϰ´ó»á£©¡¢ICLR£¨¹ú¼Ê±íÕ÷ѧϰ´ó»á£©²¢³ÆÎª»úеѧϰÁìÓòÄÚÄѶÈ×î´ó¡¢Ë®Æ½×î¸ßµÄÈý´ó¾Û»á¡£¡£¡£¡£¡£×÷ΪÑëÆóÐÂÐÍÑз¢»ú¹¹£¬£¬£¬£¬£¬£¬TeleAI ʼÖÕ»îÔ¾ÔÚ¿ÆÑ§Ñо¿µÄ×îǰÏߣ¬£¬£¬£¬£¬£¬ÔÚ°üÀ¨ NeurIPS¡¢ICML¡¢ICLR£¬£¬£¬£¬£¬£¬¼° ACM¡¢ACL¡¢AAAI µÈÈ˹¤ÖÇÄÜÁìÓòµÄ¶¥¼¶Ñ§Êõ¾Û»áÂÅ´´¼Ñ¼¨¡£¡£¡£¡£¡£

TeleAI ¹¹½¨ÁËÒÔAIÖÎÀí¡¢ÖÇ´«Íø£¨AI Flow£©¡¢ÖÇÄܹâµç£¨°üÀ¨¾ßÉíÖÇÄÜ£©¡¢ÖÇÄÜÌåΪ½¹µãµÄ¡°Ò»ÖÎ+ÈýÖÇ¡±Õ½ÂÔ¿ÆÑнṹ¡£¡£¡£¡£¡£ÍŽáÖÇ´«Íø£¨AI Flow£©£¬£¬£¬£¬£¬£¬´óÄ£×Ó¡¢¾ßÉíÖÇÄܵÈÇ°ÑØÊÖÒÕÁ¢Ò콫»ñµÃ¼ÓËÙÉú³¤¡£¡£¡£¡£¡£Í¬Ê±£¬£¬£¬£¬£¬£¬±¾´ÎÈëÑ¡ NeurIPS 2025 µÄÑо¿Ð§¹û£¬£¬£¬£¬£¬£¬Ò²½«ÎªTeleAIÔÚÖÇ´«Íø£¨AI Flow£©µÄÑз¢Ìṩ»ù´¡Ö§³Ö£¬£¬£¬£¬£¬£¬ÖúÁ¦È˹¤ÖÇÄÜ´ÓÀíÂÛÇ°ÑØ×ßÏò¹¤ÒµÓ¦Óᣡ£¡£¡£¡£

NeurIPS 2025 ÈëÑ¡ÂÛÎÄ£º

K. Jiang et al., "MiN: Mixture of Noise for Pre-Trained Model-Based Class-Incremental Learning", NeurIPS 2025.

S. Yin et al., "Towards Reliable LLM-based Robots Planning via Combined Uncertainty Estimation", NeurIPS 2025.

W. Xie et al., "KungfuBot: Physics-Based Humanoid Whole-Body Control for Learning Highly-Dynamic Skills", NeurIPS 2025, arXiv:2506.12851.

J. Shi et al., "Adversarial Locomotion and Motion Imitation for Humanoid Policy Learning", NeurIPS 2025, arXiv:2504.14305.

Z. Ning et al., "CAS-Spec: Cascade Adaptive Self-Speculative Decoding for On-the-Fly Lossless Inference Acceleration of LLMs", NeurIPS 2025.

Z. Huang et al., "NFIG: Multi-Scale Autoregressive Image Generation via Frequency Ordering", NeurIPS 2025.

W. Lin et al., "PUO-Bench: A Panel Understanding and Operation Benchmark with A Privacy-Preserving Framework", NeurIPS 2025.

ɨһɨÔÚÊÖ»ú·­¿ªÄ¿½ñÒ³